Proper Orthogonal Decomposition for Reduced Basis Feedback Controllers for Parabolic Equations

نویسندگان

  • Jeanne A. Atwell
  • Belinda B. King
چکیده

In this paper, we present a discussion of the proper orthogonal decomposition (POD) as applied to simulation and feedback control of the one dimensional heat equation. We provide two examples of input collections to which the POD process is applied. First, we apply POD directly to the nite element basis of linear B-splines. Next we additionally include time snapshots. We show that although the second case provides better simulations, this POD basis is ill-suited for control problems. We provide a discussion of both the linear quadratic regulator (LQR) problem, and the linear quadratic gaussian (LQG) problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling MPC and HJB for the Computation of POD-based Feedback Laws

In this paper we use a reference trajectory computed by a model predictive method to shrink the computational domain where we set the Hamilton-Jacobi Bellman (HJB) equation. Via a reduced-order approach based on proper orthogonal decomposition(POD), this procedure allows for an efficient computation of feedback laws for systems driven by parabolic equations. Some numerical examples illustrate t...

متن کامل

Proper Orthogonal Decomposition for Reduced Order Control of Partial Differential Equations

Numerical models of PDE systems can involve very large matrix equations, but feedback controllers for these systems must be computable in real time to be implemented on physical systems. Classical control design methods produce controllers of the same order as the numerical models. Therefore, reduced order control design is vital for practical controllers. The main contribution of this research...

متن کامل

Nonlinear model reduction via a locally weighted POD method

In this article, we propose a new approach for model reduction of parameterized partial differential equations (PDEs) by a locally weighted proper orthogonal decomposition (LWPOD) method. The presented approach is particularly suited for large-scale nonlinear systems characterized by parameter variations. Instead of using a global basis to construct a global reduced model, LWPOD approximates th...

متن کامل

Adaptive Control of Chemical Distributed Parameter Systems

The adaptive output feedback control problem of chemical distributed parameter systems is investigated while the process parameters are unknown. Such systems can be usually modeled by semilinear partial differential equations (PDEs). A combination of Galerkin’s method and proper orthogonal decomposition is applied to generate a reduced order model which captures the dominant dynamic behavior of...

متن کامل

Trust-region Proper Orthogonal Decomposition for Flow Control

The proper orthogonal decomposition (POD) is a model reduction technique for the simulation of physical processes governed by partial differential equations, e.g. fluid flows. It can also be used to develop reduced order control models. Fundamental is the computation of POD basis functions that represent the influence of the control action on the system in order to get a suitable control model....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999